This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK


Journal of Liquid Chromatography \& Related Technologies
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title $\sim$ content=t713597273

# LIPOPHILICITY OF NATURAL SWEETENERS ESTIMATED ON VARIOUS OILS AND FATS IMPREGNATED THIN-LAYER CHROMATOGRAPHY PLATES 

Costel Sârbua; Rodica Domnica Briciu ${ }^{\text {a }}$
${ }^{\text {a }}$ Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Cluj Napoca, Romania
Online publication date: 04 May 2010

To cite this Article Sârbu, Costel and Briciu, Rodica Domnica(2010) 'LIPOPHILICITY OF NATURAL SWEETENERS ESTIMATED ON VARIOUS OILS AND FATS IMPREGNATED THIN-LAYER CHROMATOGRAPHY PLATES', Journal of Liquid Chromatography \& Related Technologies, 33: 7, 903-921
To link to this Article: DOI: 10.1080/10826071003766021
URL: http://dx.doi.org/10.1080/10826071003766021

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

# LIPOPHILICITY OF NATURAL SWEETENERS ESTIMATED ON VARIOUS OILS AND FATS IMPREGNATED THIN-LAYER CHROMATOGRAPHY PLATES 

## Costel Sârbu and Rodica Domnica Briciu

Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Cluj Napoca, RomaniaA variety of oils (paraffin, olive, sunflower, corn, castor, cod liver) and fats (margarine, butter, pig, sheep, pullet, human) impregnated TLC-plates were indirectly evaluated and characterized from the lipophilicity point of view by employing a series of experimental lipophilicity parameters estimated for a representative group of natural sweeteners from retention data. The relevance of the results was evaluated by a critical comparison of the lipophilicity parameters with a series of theoretical lipophilicity and solubility indices. The ALOGPs descriptor offers the best correlation coefficients, higher than 0.9. The principal component analysis applied to the retention data and the matrices formed by each distinct group of experimental lipophilicity indices allowed a realistic classification of the fats and oils, through the 3D graphs ("lipophilicity spaces") and gave new insights into the retention mechanism involved in the chromatographic process.
\end{abstract}

Keywords animal and human fats, lipophilicity, natural sweeteners, oils, PCA, TLC

## INTRODUCTION

In the last decades, many predicting statistical models based on more or less complex equations were produced in order to determine with an adequate statistical degree of confidence, the physicochemical properties of new molecules, even before they are actually synthesized. This is, in fact, the main advantage of the quantitative structure property relationships (QSPR), quantitative structure retention relationships (QSRR), or quantitative structure activity relationship (QSAR) experiments. On the basis of these concepts, a large number of scientific papers have invaded the literature presenting correlations of biological activity or toxicity of compounds with their physicochemical and pharmaceutical properties, such

[^0]as lipophilicity, solubility, stability, reactivity, retention (partition), permeability, transportability, pharmacokinetics, toxicity, and mutagenicity. ${ }^{[1]}$ The lipophilicity is the major property involved in the QSAR/QSPR/QSRR experiments, and as a direct consequence many software were developed for generating theoretical values on the basis of molecular, atomistic or properties particularities of a large number of compounds.

The lipophilicity is defined as the tendency of a compound to partition to non-polar versus aqueous environments, such so, there may be considered that the environmental circumstances play a decisive role over the chemical and biological behavior. ${ }^{[2,3]}$ The possibilities of lipophilicity experimental determination are divided in two major groups such as direct and indirect techniques. The most known, and in the same time the most used direct method, describes the shake flask technique, but it has been almost totally replaced by the indirect techniques, such as the chromatographic ones, ${ }^{[4,5]}$ which are more flexible and presents some significant advantages: dynamic process, the consumption of the investigated compounds is minimal, high purity chemicals and additional analytical quantification is not required. These methods require only the determination of some retention parameters. ${ }^{[6,7]}$

The lipophilicity is usually expressed by the partition coefficient, denoted in few different ways, frequently depending on the determination method $\left(\log P, \log k_{w}, \log K_{o w}, R_{M}\right)$. Considering that the lipophilicity experiments are performed mainly to evidence the in vivo behavior of a specific compound, it may be appreciated that the actual stationary phase's materials are too simple and does not offer a realistic alternative of biological membranes. Moreover, the large number of software are able to offer different $\log \mathrm{P}$ values, which are often very different and until now there are not rationale and objective evidences to differentiate and choose the best ones.

Concerning the experimental estimation of lipophilicity, the chromatographic procedures offer large possibilities because the combinations between both stationary and mobile phases are practically unlimited. Reverse phase thin-layer chromatography using impregnated layers with different materials appears to be one of the most suited solutions. In this order, for example, any oil or fat, which may be homogeneously dissolved in a solvent may be used for impregnation. In addition, the vegetable oils or animal fats may satisfy the complexity requirements, and may be involved in the obtaining of new realistic models for the mimesis of biological membranes. The chemical composition of vegetable oils and related products are rich in triglycerides, free fatty acids (especially oleic and linoleic acid), phytosterols, lipophilic vitamins, and traces of minerals. ${ }^{[8,9]}$ On the other hand, the animal fats present a high concentration of saturated fatty acids and cholesterol. ${ }^{[10]}$

Over years, the paraffin oil, ${ }^{[11-15]}$ near by silicon oil, ${ }^{[16,17]}$ and ethyl oleate, ${ }^{[18]}$ were successfully used for the impregnation of TLC-plates in order to change the stationary phase characteristics and improve the chromatographic performances.

The goal of this paper was to investigate the chromatographic behavior of a representative class of natural sweeteners (arabitol, xylitol, adonitol, mannitol, sorbitol, galactose, fructose, glucose, xylose, mannose, galactosamine, sucrose, maltose), which were characterized and compared with the contribution of various experimental lipophilicity indices $\left(\mathrm{R}_{\mathrm{M} 0}\right.$, b , mean of $R_{F}\left(m R_{F}\right)$, mean of $R_{M}\left(m R_{M}\right)$, scores corresponding to the first principal components of $\mathrm{R}_{\mathrm{F}}\left(\mathrm{PC1} / \mathrm{R}_{\mathrm{F}}\right)$ and $\mathrm{R}_{\mathrm{M}}\left(\mathrm{PC1} / \mathrm{R}_{\mathrm{M}}\right)$ ) on oils and fats impregnated TLC-silica gel plates (paraffin - Pa, olive - Ol, sunflower SF, corn - Co, castor - Ca, margarine - Ma, butter - Bu, cod, pig, sheep - Sh, pullet - Pu, and human - Hu). Furthermore, the obtained lipophilicity indices of the investigated natural sweeteners were compared between them and with computed $\log \mathrm{P}$ values. We also have to mention the lack of information concerning the lipophilicity of sweeteners; the literature and data bases offer only few data. ${ }^{[19]}$ The principal components analysis (PCA), through "lipophilicity space" option, offers once more the possibility to analyze and compare the lipophilicity of the vegetal and animal fats in the context of human fat. In addition, PCA loadings are used to investigate and to compare the retention mechanism involved in the chromatographic process.

## THEORY

## Methods

The retention factor $\left(\mathrm{R}_{\mathrm{F}}\right)$ is the basis of lipophilicity estimation by TLC, since all the lipophilicity indices are directly derived from retention data. The most popular descriptor in TLC is considered the retardation factor $\left(\mathrm{R}_{\mathrm{M}}\right)$ obtained, as was described by Bate-Smith and Westall ${ }^{[20]}$ through the following formula:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{M}}=\log \left(1 / \mathrm{R}_{\mathrm{F}}-1\right) \tag{1}
\end{equation*}
$$

The direct influence of the organic modifier concentration from the mobile phase over the $\mathrm{R}_{\mathrm{M}}$ value is recovered into the linear relationship described by a TLC adapted Soczewiński-Wachtmeister ${ }^{[21]}$ Eq.:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{M}}=\mathrm{R}_{\mathrm{M} 0}+\mathrm{b} C \tag{2}
\end{equation*}
$$

where $\mathrm{R}_{\mathrm{M} 0}$ represents the extrapolated value to pure water, b is the regression slope and in the same time it is considered to be the specific surface area of the stationary phase and also an alternative descriptor of lipophilicity; $C$ represents the volume fraction of the organic solvent in the mobile phase. The $\mathrm{R}_{\mathrm{M} 0}$ is usually expressed directly from regression equation of five $R_{M}$ values obtained for mobile phases containing different fractions of organic modifier.

More recently the PCA has been successfully applied for the lipophilicity estimation from retention data. The methodology based on PCA is not only more robust to different errors but it is also more informative, because the results (scores and loadings) offer new scales of lipophilicity and more efficient alternatives for characterization and ranking of investigated compounds and stationary phases, including new insights into the chromatographic mechanism. Much more, the mean of $\mathrm{R}_{\mathrm{F}}$ and $\mathrm{R}_{\mathrm{M}}$ values can be also an illuminating alternative for the lipophilicity estimation. ${ }^{[22-25]}$

## $\log P$

A large number of software and internet module are now available to compute theoretical $\log \mathrm{P}$ values applying different algorithms based on structural, atomistic, topological, electrotopological, or other considerations. In the present study, the structure of the compounds were first preoptimized with the Molecular Mechanics Force Field procedure included in Hyperchem version 7.5 (HyperChem, release 7.5 for Windows, Molecular Modeling System; Hypercube), and the resulting geometries were further refined by means of the semi empirical method Parametric Method-3 using the Fletcher-Reeves algorithm and a gradient norm limit of $0.009 \mathrm{kcal} \AA^{-1}$. The optimized geometries were loaded by software like Chem3D Ultra 8.0 and Dragon Plus version 5.4 in order to calculate various lipophilicity descriptors. Three of the $\log \mathrm{P}$ values were calculated by Chem3D Ultra $8.0\left(\mathrm{CLogP}, \log (\mathrm{p})^{\mathrm{C}}\right.$-Crippen method, $\log (\mathrm{p})^{\mathrm{V}}$-Viswanadhan method) and four are given by the Dragon 5.4 (MLOGP-Moriguchi method, MLOGP ${ }^{2}$-Squared Moriguchi method, ALOGP-GhoseCrippen method, ALOGP ${ }^{2}$ - Squared Ghose-Crippen method). Another six were offered by the internet module ALOGPS 2.1-vcclab (ALOGPs, AC $\log P$, miLogP, KOWWIN, XLOGP2, XLOGP3). ${ }^{[26]}$ Moreover, the ALOGPS 2.1 offered a series of solubility computed indices (ALOGpS, AC logs, $\mathrm{AB} / \operatorname{LogS}$ ). All the computed lipophilicity indices are listed in Table 1, while the solubility values are presented in Table 2.
TABLE 1 The Computed Lipophilicity Descriptors of Some Natural Sweeteners

| No. | Compound | LogP $^{\mathrm{C}}$ | LogP $^{\mathrm{V}}$ | CLogP | MLOGP | MLOGP $^{2}$ | ALOGP | ALOGP ${ }^{2}$ | ALOGPs | AC $\operatorname{logP}$ | miLogP | KOWWIN | XLOGP2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Arabitol | -2.40 | -1.83 | -1.88 | -2.10 | 4.42 | -2.43 | 5.90 | -2.41 | -2.18 | -2.67 | -2.56 | -3.22 |
| 2 | Xylitol | -2.40 | -1.83 | -1.88 | -2.10 | 4.42 | -2.43 | 5.90 | -2.41 | -2.18 | -2.67 | -2.56 | -3.22 |
| 3 | Adonitol | -2.40 | -1.83 | -1.88 | -2.10 | 4.42 | -2.43 | 5.90 | -2.41 | -2.18 | -2.67 | -2.56 | -3.22 |
| 4 | Mannitol | -2.94 | -2.20 | -2.05 | -2.50 | 6.24 | -2.94 | 8.64 | -2.57 | -2.73 | -3.10 | -3.01 | -3.90 |
| 5 | Sorbitol | -2.94 | -2.20 | -2.05 | -2.50 | 6.24 | -2.94 | 8.64 | -2.57 | -2.73 | -3.10 | -3.01 | -3.90 |
| 6 | Galactose | -2.38 | -1.76 | -2.21 | -2.48 | 6.17 | -2.51 | 6.32 | -2.47 | -2.32 | -2.64 | -2.89 | -2.34 |
| 7 | Fructose | -2.08 | -1.25 | -2.18 | -2.48 | 6.17 | -2.48 | 6.57 | -2.35 | -1.98 | -2.78 | -1.55 | -2.38 |
| 8 | Glucose | -2.38 | -1.76 | -2.21 | -2.48 | 6.17 | -2.51 | 6.32 | -2.47 | -2.32 | -2.64 | -2.89 | -2.34 |
| 9 | Xylose | -1.84 | -1.39 | -2.18 | -2.09 | 4.36 | -2.00 | 4.01 | -2.32 | -1.65 | -2.22 | -2.91 | -1.88 |
| 10 | Mannose | -2.38 | -1.76 | -2.21 | -2.48 | 6.17 | -2.51 | 6.32 | -2.47 | -2.32 | -2.64 | -2.89 | -2.34 |
| 11 | Galactosamine | -2.76 | -2.11 | -2.18 | -2.48 | 6.17 | -2.80 | 7.86 | -2.61 | -2.86 | -3.35 | -2.20 | -2.41 |
| 12 | Sucrose | -3.82 | -2.47 | -3.09 | -3.90 | 15.19 | -4.31 | 18.58 | -2.68 | -3.99 | -3.74 | -4.27 | -4.13 |
| 13 | Maltose | -4.71 |  | -4.40 | -3.90 | 15.19 | -4.26 | 18.15 | -2.73 | -4.17 | -4.45 | -5.12 | -4.31 |

TABLE 2 The Solubility Values of Natural Sweeteners

| No | Compound | ALOGpS | ALOGpS <br> $(\mathrm{g} / \mathrm{L})$ | AC <br> $\operatorname{logS}$ | AC $\operatorname{logS}$ <br> $(\mathrm{g} / \mathrm{L})$ | $\mathrm{AB} / \operatorname{logS}$ | AB/logS <br> $(\mathrm{g} / \mathrm{L})$ | $\mathrm{S}_{\text {exp }}{ }^{*}$ |
| ---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| 1 | Arabitol | 0.26 | 2800 | 0.42 | 400 | 1.12 | 2010 | $729^{[27]}$ |
| 2 | Xylitol | 0.26 | 2800 | 0.42 | 400 | 1.12 | 2010 | $627^{[28]}$ |
| 3 | Adonitol | 0.26 | 2800 | 0.42 | 400 | 1.12 | 2010 | $936^{[27]}$ |
| 4 | Mannitol | 0.17 | 270 | 0.55 | 640 | 1.03 | 1950 | $145^{[28]}$ |
| 5 | Sorbitol | 0.17 | 270 | 0.55 | 640 | 1.03 | 1950 | $687^{[28]}$ |
| 6 | Galactose | 0.35 | 400 | 0.25 | 320 | 0.77 | 1060 | $683^{[29]}$ |
| 7 | Fructose | 0.29 | 350 | 0.38 | 430 | 0.93 | 1530 | $778^{[27]}$ |
| 8 | Glucose | 0.35 | 400 | 0.25 | 320 | 0.77 | 1060 | $1200^{[27]}$ |
| 9 | Xylose | 0.45 | 430 | 0.12 | 200 | 1.08 | 1810 | $555^{[27]}$ |
| 10 | Mannose | 0.35 | 400 | 0.25 | 320 | 0.77 | 1060 | $713^{[27]}$ |
| 11 | Galactosamine | 0.29 | 350 | 0.17 | 270 | 0.76 | 1030 | $500^{[30]}$ |
| 12 | Sucrose | 0.06 | 390 | 0.64 | 1640 | 0.10 | 430 | $2100^{[27]}$ |
| 13 | Maltose | 0.04 | 380 | 0.55 | 1210 | 0.12 | 450 | $780^{[27]}$ |

${ }^{*} \mathrm{~S}_{\text {exp }}$ - Experimental determined solubility.

## EXPERIMENTAL

All the compounds and solvents were obtained from commercial sources (Merck, Fluka, and Sigma) in analytical degree purity. The oils (paraffin, olive, sunflower, corn, castor, cod liver) and fats (margarine, butter, pig, sheep, pullet) used for the impregnation were from local markets, while the female fat was obtained from liposuction surgery. The standard solutions of natural sweeteners were prepared in water $\left(1 \mathrm{mg} \mathrm{mL}^{-1}\right)$. The spots $(1 \mu \mathrm{~L})$ were applied at 1.5 cm from the bottom edge and at 0.7 cm from lateral edges using a Hamilton microsyringe of $10 \mu \mathrm{~L}$. The distance between the spots was by 0.7 cm . The elution was performed by ascendant development into a chromatographic chamber previously saturated for 10 minutes.

The silica gel $60 \mathrm{~F}_{254}$ plates $(10 \times 20 \mathrm{~cm})$ were impregnated with $10 \%$ diethyl ether solution of fats, except for pig, sheep, and pullet fats, which were prepared as $5 \%$ solutions. The water presence in the margarine and butter lead to the necessity of its elimination from the etheric solution by using a separation funnel previously of impregnation. The pig, pullet, and sheep fats used as raw material were extracted from the natural membranes by heating to melting point followed by a filtration. The obtained fats were used for the impregnation as $5 \%$ diethyl ether solution. The human fat was simply dissolved in the diethyl ether by using a porcelain mortar. The impregnation was performed by ascendant development.

In order to select the most exclusive organic modifier for the mobile phase, five organic solvents were tested. The investigated solvents were:
methanol, ethanol, isopropanol, acetone, and acetonitrile (ACN). The best results were obtained when ACN was used. The mobile phases containing different mixtures of ACN and water were optimized in order to obtain a significant increase of migration of the compounds while the elution step was changed. In each case, 5 steps were performed at different fractions of ACN between $70 \%$ and $90 \%$ for all the stationary phases, in $5 \%$ increments. The sugars were visualized by reducing directly on the plate with silver nitrate and sodium hydroxide (Tollens reaction). The sugars spots appeared as brown spots on a white background, after heating at $105^{\circ} \mathrm{C}$ for 5 min .

## RESULTS AND DISCUSSION

The experimental lipophilicity indices obtained on the investigated plates are listed in Tables 3 and 4. All the results, including the computed lipophilicity indices, show the disaccharides as the most hydrophilic compounds, followed by the monosaccharide. The alcohols are more lipophilic. Observing the galactosamine versus galactose it is easy to conclude that the amino group leads to an increased lipophilic character. If the classical $\mathrm{R}_{\mathrm{M} 0}$ values are considered to be the experimental reference values, there is a need to show the degree of confidence, described through the regression correlation coefficients obtained for the $\mathrm{R}_{\mathrm{M}}$ values and the ACN fraction in the mobile phase, which were higher than 0.99 except for xylitol ( $\mathrm{r}_{\mathrm{Ma}}=0.98$ ), mannitol ( $\mathrm{r}_{\mathrm{Ma}}=0.98$ ), sorbitol ( $\mathrm{r}_{\mathrm{Ma}}=0.97$, $\mathrm{r}_{\mathrm{Pig}}=0.98$ ), galactose $\left(r_{\mathrm{Ca}}=0.98, \mathrm{r}_{\mathrm{Cod}}=0.98\right)$, galactosamine $\left(\mathrm{r}_{\mathrm{SF}}=0.98, \mathrm{r}_{\mathrm{Ca}}=0.97, \mathrm{r}_{\mathrm{Ma}}=\right.$ $0.96, \mathrm{r}_{\mathrm{Bu}}=0.98, \mathrm{r}_{\mathrm{Cod}}=0.98, \mathrm{r}_{\mathrm{Hu}}=0.98$ ), sucrose $\left(\mathrm{r}_{\mathrm{SF}}=0.95, \mathrm{r}_{\mathrm{Ca}}=0.98\right.$, $\left.r_{\text {Pig }}=0.97, r_{P u}=0.98\right)$, and maltose $\left(r_{\mathrm{SF}}=0.97, r_{\mathrm{Ma}}=0.98, \mathrm{r}_{\mathrm{Bu}}=0.98\right.$, $\left.r_{C o d}=0.98, r_{S h}=0.98\right)$. Concerning the computed $\log \mathrm{P}$ values, as it was expected they are strongly correlated. This expectation is clearly illustrated in Figure 1 (obtained by applying PCA to the theoretical $\log \mathrm{P}$ values) where all the values form a compact group, except for XLOGP3. Moreover, the $\log S$ values are identified as a distinct correlated group.

The correlation matrix of the experimental values versus theoretical ones is characterized by fair correlation coefficients (Tables 5 and 6), except for the solubilities expressed as $\mathrm{gL}^{-1}$, including the experimental determined values ( $\mathrm{r} \leq 0.60$ ). Considering the theoretical descriptors, it may be observed that the ALOGPs values offer the best correlation, followed by the $\mathrm{AC} \log \mathrm{P}, \log \mathrm{P}^{\mathrm{C}}$ and miLogP, which may indicate that the lipophilicity of natural sweeteners is better estimated by the newly developed methods based on topological descriptors, rather than those obtained on the basis of atomistic or molecular approaches (XLOGP2, XLOGP3, CLOGP). The newly ALOGPS 2.1. version of $\log \mathrm{P}$ computing module,
TABLE 3 The Lipophilicity Indices of Natural Sweeteners Obtained on Paraffin, Olive, Sunflower, Corn, Castor Oil and Margarine-Impregnated TLC-Plates

| No. | Compound | Paraffin |  |  |  |  |  | Olive |  |  |  |  |  | Sunflower |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{mR}_{\mathrm{F}}$ | $\mathrm{mR}_{\mathrm{M}}$ | $\mathrm{R}_{\mathrm{M} 0}$ | b | $\mathrm{PC} 1 / \mathrm{R}_{\mathrm{F}}$ | $\mathrm{PC1} / \mathrm{R}_{\mathrm{M}}$ | $\mathrm{mR}_{\mathrm{F}}$ | $\mathrm{mR}_{\mathrm{M}}$ | $\mathrm{R}_{\mathrm{M} 0}$ | b | $\mathrm{PC} 1 / \mathrm{R}_{\mathrm{F}}$ | $\mathrm{PC1} / \mathrm{R}_{\mathrm{M}}$ | $\mathrm{mR}_{\mathrm{F}}$ | $\mathrm{mR}_{\mathrm{M}}$ | $\mathrm{R}_{\mathrm{M} 0}$ | b | $\mathrm{PC} 1 / \mathrm{R}_{\mathrm{F}}$ | $\mathrm{PC1} / \mathrm{R}_{\mathrm{M}}$ |
| 1 | Arabitol | 0.351 | 0.290 | -2.61 | 0.036 | -0.109 | 0.399 | 0.338 | 0.322 | -2.96 | 0.041 | -0.089 | 0.340 | 0.316 | 0.366 | -2.62 | 0.037 | -0.069 | 0.288 |
| 2 | Xylitol | 0.344 | 0.312 | -2.93 | 0.040 | -0.099 | 0.348 | 0.334 | 0.332 | -2.97 | 0.041 | -0.080 | 0.319 | 0.310 | 0.379 | -2.62 | 0.037 | -0.057 | 0.261 |
| 3 | Adonitol | 0.390 | 0.211 | -2.63 | 0.036 | -0.197 | 0.576 | 0.387 | 0.218 | -2.89 | 0.039 | -0.196 | 0.573 | 0.366 | 0.265 | -2.95 | 0.040 | -0.189 | 0.515 |
| 4 | Manitol | 0.284 | 0.460 | -3.34 | 0.047 | 0.029 | 0.013 | 0.271 | 0.505 | -3.75 | 0.053 | 0.052 | -0.072 | 0.253 | 0.542 | -3.50 | 0.050 | 0.057 | -0.110 |
| 5 | Sorbitol | 0.274 | 0.489 | -3.52 | 0.050 | 0.049 | -0.055 | 0.261 | 0.520 | -3.49 | 0.050 | 0.078 | -0.105 | 0.255 | 0.535 | -3.40 | 0.049 | 0.056 | -0.094 |
| 6 | Galactose | 0.298 | 0.419 | -3.18 | 0.045 | $-0.002$ | 0.104 | 0.303 | 0.411 | -3.34 | 0.047 | $-0.017$ | 0.140 | 0.275 | 0.470 | -3.00 | 0.043 | 0.015 | 0.056 |
| 7 | Fructose | 0.346 | 0.304 | -2.78 | 0.039 | -0.102 | 0.367 | 0.354 | 0.291 | -3.03 | 0.042 | -0.125 | 0.408 | 0.313 | 0.371 | -2.63 | 0.038 | -0.066 | 0.282 |
| 8 | Glucose | 0.315 | 0.378 | -3.01 | 0.042 | $-0.035$ | 0.199 | 0.326 | 0.356 | -3.27 | 0.045 | $-0.067$ | 0.261 | 0.300 | 0.407 | -2.89 | 0.041 | -0.041 | 0.198 |
| 9 | Xylose | 0.463 | 0.068 | -2.36 | 0.030 | -0.349 | 0.900 | 0.468 | 0.060 | -2.46 | 0.031 | $-0.359$ | 0.925 | 0.429 | 0.130 | $-1.90$ | 0.025 | -0.302 | 0.825 |
| 10 | Mannose | 0.347 | 0.310 | -3.18 | 0.044 | -0.112 | 0.351 | 0.350 | 0.303 | -3.19 | 0.044 | -0.119 | 0.380 | 0.318 | 0.365 | -2.79 | 0.039 | -0.078 | 0.292 |
| 11 | Galactosamine | 0.031 | 1.572 | -1.47 | 0.038 | 0.644 | -2.466 | 0.028 | 1.588 | -0.94 | 0.032 | 0.654 | -2.492 | 0.032 | 1.547 | -1.26 | 0.035 | 0.605 | -2.350 |
| 12 | Sucrose | 0.247 | 0.581 | -4.06 | 0.058 | 0.105 | -0.264 | 0.246 | 0.578 | -3.96 | 0.057 | 0.107 | -0.235 | 0.308 | 0.394 | -2.95 | 0.042 | $-0.062$ | 0.231 |
| 13 | Maltose | 0.217 | 0.672 | -4.13 | 0.060 | 0.177 | -0.470 | 0.222 | 0.670 | -4.47 | 0.064 | 0.160 | -0.443 | 0.220 | 0.665 | -4.16 | 0.060 | 0.132 | -0.394 |


|  | Corn |  |  |  |  |  | Castor |  |  |  |  |  | Margarine |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{mR}_{\mathrm{F}}$ | $\mathrm{mR}_{\mathrm{M}}$ | $\mathrm{R}_{\mathrm{M} 0}$ | b | $\mathrm{PC1} / \mathrm{R}_{\mathrm{F}}$ | $\mathrm{PC1} / \mathrm{R}_{\mathrm{M}}$ | $\mathrm{mR}_{\mathrm{F}}$ | $\mathrm{mR}_{\mathrm{M}}$ | $\mathrm{R}_{\mathrm{M} 0}$ | b | $\mathrm{PC1} / \mathrm{R}_{\mathrm{F}}$ | $\mathrm{PC1} / \mathrm{R}_{\mathrm{M}}$ | $\mathrm{mR}_{\mathrm{F}}$ | $\mathrm{mR}_{\mathrm{M}}$ | $\mathrm{R}_{\mathrm{M} 0}$ | b | $\mathrm{PC1} / \mathrm{R}_{\mathrm{F}}$ | $\mathrm{PC1} / \mathrm{R}_{\mathrm{M}}$ |
| 1 Arabitol | 0.314 | 0.374 | -2.84 | 0.040 | $-0.061$ | 0.265 | 0.327 | 0.351 | -3.08 | 0.043 | -0.071 | 0.289 | 0.391 | 0.216 | -3.08 | 0.041 | $-0.203$ | 0.501 |
| 2 Xylitol | 0.306 | 0.390 | -2.79 | 0.040 | -0.044 | 0.230 | 0.325 | 0.355 | -3.07 | 0.043 | -0.066 | 0.278 | 0.391 | 0.219 | -3.14 | 0.042 | -0.203 | 0.492 |
| 3 Adonitol | 0.350 | 0.292 | -2.76 | 0.038 | -0.141 | 0.448 | 0.370 | 0.258 | -3.06 | 0.041 | -0.165 | 0.497 | 0.372 | 0.243 | -2.28 | 0.032 | -0.146 | 0.465 |
| 4 Manitol | 0.256 | 0.538 | -3.66 | 0.053 | 0.054 | -0.102 | 0.251 | 0.542 | -3.37 | 0.049 | 0.097 | -0.144 | 0.258 | 0.506 | -2.73 | 0.040 | 0.104 | -0.141 |
| 5 Sorbitol | 0.254 | 0.542 | -3.59 | 0.052 | 0.059 | -0.111 | 0.251 | 0.547 | $-3.53$ | 0.051 | 0.094 | -0.158 | 0.259 | 0.507 | -2.80 | 0.041 | 0.101 | -0.146 |
| 6 Galactose | 0.283 | 0.460 | -3.36 | 0.048 | -0.004 | 0.074 | 0.292 | 0.445 | -3.46 | 0.049 | 0.003 | 0.068 | 0.265 | 0.483 | -2.59 | 0.038 | 0.089 | -0.081 |
| 7 Fructose | 0.329 | 0.344 | -3.04 | 0.042 | -0.100 | 0.332 | 0.329 | 0.345 | -3.08 | 0.043 | -0.076 | 0.303 | 0.355 | 0.281 | -2.52 | 0.035 | -0.113 | 0.371 |
| 8 Glucose | 0.308 | 0.398 | -3.34 | 0.047 | -0.061 | 0.212 | 0.317 | 0.381 | -3.33 | 0.046 | -0.052 | 0.212 | 0.332 | 0.338 | -2.90 | 0.040 | -0.066 | 0.233 |
| 9 Xylose | 0.435 | 0.121 | -2.60 | 0.034 | -0.319 | 0.831 | 0.443 | 0.109 | -2.53 | 0.033 | $-0.308$ | 0.834 | 0.462 | 0.069 | -1.99 | 0.026 | -0.340 | 0.860 |
| 10 Mannose | 0.327 | 0.351 | -3.19 | 0.044 | -0.101 | 0.318 | 0.381 | 0.256 | -4.27 | 0.057 | -0.218 | 0.487 | 0.358 | 0.280 | -2.77 | 0.038 | -0.123 | 0.368 |
| 11 Galactosamine | 0.039 | 1.459 | -1.31 | 0.035 | 0.602 | -2.161 | 0.046 | 1.415 | -2.17 | 0.045 | 0.607 | -2.093 | 0.055 | 1.339 | -2.43 | 0.047 | 0.584 | -2.005 |
| 12 Sucrose | 0.259 | 0.539 | -3.90 | 0.055 | 0.039 | -0.102 | 0.279 | 0.529 | -4.81 | 0.067 | 0.011 | -0.139 | 0.239 | 0.583 | -3.55 | 0.052 | 0.138 | $-0.330$ |
| 13 Maltose | 0.241 | 0.598 | -4.09 | 0.059 | 0.077 | -0.233 | 0.227 | 0.662 | -4.51 | 0.065 | 0.144 | -0.436 | 0.219 | 0.685 | -4.45 | 0.064 | 0.179 | -0.586 |

TABLE 4 The Lipophilicity Indices of Natural Sweeteners Obtained on Butter, Cod, Human, Pig, Sheep and Pullet Fat-Impregnated TLC Plates

|  |  | Butter |  |  |  |  |  | Cod |  |  |  |  |  | Human |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Compound | $\mathrm{mR}_{\mathrm{F}}$ | $\mathrm{mR}_{\mathrm{M}}$ | $\mathrm{R}_{\mathrm{M} 0}$ | b | $\mathrm{PC1} / \mathrm{R}_{\mathrm{F}}$ | $\mathrm{PC1} / \mathrm{R}_{\mathrm{M}}$ | $\mathrm{mR}_{\mathrm{F}}$ | $\mathrm{mR}_{\mathrm{M}}$ | $\mathrm{R}_{\mathrm{M} 0}$ | b | $\mathrm{PC1} / \mathrm{R}_{\mathrm{F}}$ | $\mathrm{PC1} / \mathrm{R}_{\mathrm{M}}$ | $\mathrm{mR}_{\mathrm{F}}$ | $\mathrm{mR}_{\mathrm{M}}$ | $\mathrm{R}_{\mathrm{M} 0}$ | b | $\mathrm{PC1} / \mathrm{R}_{\mathrm{F}}$ | $\mathrm{C} 1 / \mathrm{R}$ |
| 1 | Arabitol | 0.353 | 0.290 | -2.91 | 0.040 | -0.089 | 0.284 | 0.393 | 0.205 | -2.75 | 0.037 | -0.083 | 0.231 | 0.279 | 0.437 | -2.14 | 0.032 | -0.022 | 0.197 |
| 2 | Xylitol | 0.354 | 0.290 | -2.97 | 0.041 | -0.091 | 0.284 | 0.396 | 0.201 | -2.78 | 0.037 | -0.088 | 0.240 | 0.297 | 0.401 | -2.30 | 0.034 | -0.064 | 0.274 |
| 3 | Adonitol | 0.428 | 0.141 | -3.15 | 0.041 | -0.259 | 0.618 | 0.443 | 0.109 | -2.83 | 0.037 | -0.193 | 0.422 | 0.367 | 0.252 | -2.16 | 0.030 | -0.217 | 0.608 |
| 4 | Manitol | 0.280 | 0.464 | -3.21 | 0.046 | 0.072 | -0.105 | 0.333 | 0.334 | -2.87 | 0.040 | 0.050 | -0.034 | 0.230 | 0.573 | -2.54 | 0.039 | 0.087 | -0.117 |
| 5 | Sorbitol | 0.279 | 0.471 | -3.28 | 0.047 | 0.075 | -0.119 | 0.350 | 0.311 | -3.86 | 0.052 | -0.006 | 0.054 | 0.226 | 0.587 | -2.67 | 0.041 | 0.094 | -0.154 |
| 6 | Galactose | 0.314 | 0.380 | -3.06 | 0.043 | -0.003 | 0.083 | 0.393 | 0.208 | -3.54 | 0.047 | -0.098 | 0.244 | 0.249 | 0.514 | -2.30 | 0.035 | 0.046 | 0.015 |
| 7 | Fructose | 0.363 | 0.266 | -2.69 | 0.037 | -0.106 | 0.335 | 0.417 | 0.160 | -2.69 | 0.036 | $-0.133$ | 0.326 | 0.311 | 0.370 | -2.36 | 0.034 | -0.096 | 0.341 |
| 8 | Glucose | 0.339 | 0.324 | -3.01 | 0.042 | -0.057 | 0.207 | 0.385 | 0.223 | -2.84 | 0.038 | -0.067 | 0.203 | 0.305 | 0.392 | -2.81 | 0.040 | -0.089 | 0.279 |
| 9 | Xylose | 0.477 | 0.044 | -2.25 | 0.029 | -0.343 | 0.830 | 0.522 | -0.039 | -2.18 | 0.027 | -0.349 | 0.717 | 0.427 | 0.132 | -1.73 | 0.023 | $-0.343$ | 0.890 |
| 10 | Mannose | 0.365 | 0.264 | -2.78 | 0.033 | -0.112 | 0.340 | 0.403 | 0.184 | -2.55 | 0.032 | -0.101 | 0.269 | 0.305 | 0.388 | -2.60 | 0.037 | -0.086 | 0.295 |
| 11 | Galactosamine | 0.046 | 1.350 | -0.71 | 0.026 | 0.642 | -2.091 | 0.049 | 1.151 | -0.69 | 0.025 | 0.727 | -2.052 | 0.048 | 1.398 | -2.23 | 0.045 | 0.516 | -1.964 |
| 12 | Sucrose | 0.267 | 0.517 | -3.77 | 0.054 | 0.097 | -0.221 | 0.304 | 0.403 | -3.14 | 0.044 | 0.109 | -0.168 | 0.238 | 0.597 | -3.85 | 0.056 | 0.056 | -0.215 |
| 13 | Maltose | 0.233 | 0.619 | -4.00 | 0.058 | 0.174 | -0.447 | 0.251 | 0.531 | -2.99 | 0.044 | 0.232 | -0.452 | 0.211 | 0.695 | -4.24 | 0.062 | 0.118 | -0.448 |


|  | Pig |  |  |  |  |  | Sheep |  |  |  |  |  | Pullet |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{mR}_{\mathrm{F}}$ | $\mathrm{mR}_{\mathrm{M}}$ | $\mathrm{R}_{\mathrm{M} 0}$ | b | $\mathrm{PC} 1 / \mathrm{R}_{\mathrm{F}}$ | $\mathrm{PC1} / \mathrm{R}_{\mathrm{M}}$ | $\mathrm{mR}_{\mathrm{F}}$ | $\mathrm{mR}_{\mathrm{M}}$ | $\mathrm{R}_{\mathrm{M} 0}$ | b | $\mathrm{PC1} / \mathrm{R}_{\mathrm{F}}$ | $\mathrm{PC1} / \mathrm{R}_{\mathrm{M}}$ | $\mathrm{mR}_{\mathrm{F}}$ | $\mathrm{mR}_{\mathrm{M}}$ | $\mathrm{R}_{\mathrm{M} 0}$ | b | $\mathrm{PC1} / \mathrm{R}_{\mathrm{F}}$ | $\mathrm{PC1} / \mathrm{R}_{\mathrm{M}}$ |
| 1 Arabitol | 0.352 | 0.279 | $-1.87$ | 0.027 | -0.102 | 0.415 | 0.208 | 0.608 | -1.72 | 0.029 | -0.036 | 0.258 | 0.340 | 0.313 | $-2.55$ | 0.036 | -0.080 | 0.274 |
| 2 Xylitol | 0.341 | 0.305 | -2.21 | 0.031 | -0.084 | 0.353 | 0.212 | 0.602 | $-1.90$ | 0.031 | -0.047 | 0.272 | 0.344 | 0.302 | -2.40 | 0.034 | -0.086 | 0.299 |
| 3 Adonitol | 0.383 | 0.225 | -2.44 | 0.033 | -0.180 | 0.530 | 0.231 | 0.544 | -1.52 | 0.026 | -0.084 | 0.403 | 0.392 | 0.202 | -2.26 | 0.031 | -0.191 | 0.521 |
| 4 Manitol | 0.267 | 0.487 | -2.85 | 0.042 | 0.077 | -0.063 | 0.144 | 0.825 | -2.03 | 0.036 | 0.108 | -0.226 | 0.275 | 0.462 | -2.69 | 0.039 | 0.066 | -0.061 |
| 5 Sorbitol | 0.258 | 0.523 | -3.27 | 0.047 | 0.093 | -0.149 | 0.143 | 0.833 | -2.17 | 0.037 | 0.109 | -0.243 | 0.264 | 0.498 | -3.02 | 0.044 | 0.086 | -0.142 |
| 6 Galactose | 0.299 | 0.408 | -2.83 | 0.040 | 0.002 | 0.114 | 0.174 | 0.714 | -1.82 | 0.032 | 0.042 | 0.023 | 0.303 | 0.402 | -2.87 | 0.041 | -0.000 | 0.073 |
| 7 Fructose | 0.357 | 0.274 | -2.28 | 0.032 | -0.119 | 0.421 | 0.213 | 0.592 | -1.57 | 0.027 | -0.044 | 0.295 | 0.358 | 0.272 | -2.31 | 0.032 | -0.115 | 0.364 |
| 8 Glucose | 0.332 | 0.331 | -2.59 | 0.037 | -0.068 | 0.290 | 0.228 | 0.577 | $-2.55$ | 0.039 | -0.095 | 0.328 | 0.329 | 0.343 | -2.89 | 0.040 | -0.061 | 0.206 |
| 9 Xylose | 0.475 | 0.045 | -1.82 | 0.023 | -0.373 | 0.940 | 0.346 | 0.290 | $-1.80$ | 0.026 | -0.344 | 0.970 | 0.465 | 0.065 | -2.08 | 0.027 | -0.345 | 0.829 |
| 10 Mannose | 0.356 | 0.279 | -2.50 | 0.035 | -0.121 | 0.408 | 0.241 | 0.541 | -2.44 | 0.037 | -0.122 | 0.411 | 0.364 | 0.259 | -2.30 | 0.032 | -0.128 | 0.393 |
| 11 Galactosamine | 0.026 | 1.634 | $-1.00$ | 0.033 | 0.647 | -2.616 | 0.024 | 1.637 | -0.17 | 0.023 | 0.400 | -2.044 | 0.039 | 1.428 | $-0.70$ | 0.027 | 0.628 | -2.220 |
| 12 Sucrose | 0.257 | 0.570 | -4.39 | 0.062 | 0.086 | -0.269 | 0.176 | 0.766 | -3.35 | 0.051 | 0.018 | -0.093 | 0.267 | 0.505 | -3.43 | 0.049 | 0.075 | -0.158 |
| 13 Maltose | 0.234 | 0.620 | -4.09 | 0.059 | 0.142 | -0.375 | 0.145 | 0.883 | -3.42 | 0.054 | 0.094 | -0.354 | 0.232 | 0.604 | -3.63 | 0.053 | 0.152 | -0.379 |



FIGURE 1 Loadings scatterplot corresponding to PC1 and PC2 obtained for the calculated $\log \mathrm{P}$ and $\log$ S values.
based on associative neural networks method, ${ }^{[31]}$ seems to cover, in the most efficient way, the lipophilic character of the studied compounds.

The higher correlations were obtained for the lipophilicity indices estimated on paraffin oil impregnated plates. The vegetable oils are highly similar, except for sunflower oil, which had a relative level of failure in terms of lipophilicity descriptors, while the olive oil lead to a high association level. Moreover, the pig and human fats seem to present higher similarities than the rest of animal fats. The Ghose-Crippen (ALOGP) and Moriguchi (MLOGP) algorithms and their squared values (ALOGP², MLOGP ${ }^{2}$ ) near by the ALOGPs and AC $\log P$ offered a fair description of the lipophilicity in the context of human fat. In addition, the $\log \mathrm{S}$ values presented some significant correlations, especially for the $R_{M 0, B u}$ vs. ALOGpS and $\mathrm{R}_{\mathrm{M} 0, \mathrm{Hu}}$ vs. $\mathrm{AB} / \operatorname{LogS}(\mathrm{r}=0.88)$; lower correlations were obtained for experimental solubility and the TLC lipophilicity indices. On the other hand, comparing the experimental indices, it may be appreciated that the best correlations were obtained for the classical $\mathrm{R}_{\mathrm{M} 0}$ value, and $b$ (regression parameters).

Concerning the similarities and differences of TLC-layers, it is easy to observe (Figure 2) that all the impregnation fats are highly associated, except for the sheep fat, which seems to be the most lipophilic layer. At the other pole is found the code liver oil. Moreover, the $m R_{F}, m R_{M}$, $\mathrm{PC1} / \mathrm{R}_{\mathrm{F}}$ and $\mathrm{PC1} / \mathrm{R}_{\mathrm{M}}$ patterns illustrate high regularities and show also the extreme behavior of sheep fat and code liver oil.
TABLE 5 The Correlations between the Theoretical and Experimental Lipophilicity Indices of Natural Sweeteners (Plates Impregnated with Paraffin Oil, Vegetable Oils and Margarine)

| Stationary <br> Phase | Index | $\begin{gathered} \mathrm{Log} \\ \mathrm{P}^{\mathrm{C}} \end{gathered}$ | $\begin{aligned} & \log \\ & \mathrm{P}^{\mathrm{V}} \end{aligned}$ | CLOGP | MLOGP | MLOGP ${ }^{2}$ | ALOGP | ALOGP ${ }^{2}$ | ALOGPs | AC $\log \mathrm{P}$ | miLogP | KOWWIN | XLOGP2 | XLOGP3 | $\mathrm{S}_{\text {Exp }}$ | ALOGpS | $\begin{gathered} \mathrm{AC} \\ \operatorname{logS} \end{gathered}$ | AB/logS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Paraffin <br> oil | $\mathrm{mR}_{\mathrm{F}}$ | 0.81 | 0.75 | 0.45 | 0.68 | -0.64 | 0.77 | -0.70 | 0.87 | 0.81 | 0.83 | 0.46 | 0.66 | 0.23 | -0.36 | 0.75 | -0.70 | 0.57 |
|  | $\mathrm{mR}_{\mathrm{M}}$ | -0.86 | -0.79 | -0.53 | -0.74 | 0.70 | -0.82 | 0.77 | -0.91 | -0.86 | -0.87 | -0.54 | -0.68 | -0.28 | 0.41 | -0.78 | 0.72 | -0.63 |
|  | $\mathrm{R}_{\text {M0 }}$ | 0.91 | 0.82 | 0.70 | 0.86 | -0.83 | 0.90 | -0.86 | 0.95 | 0.93 | 0.89 | 0.71 | 0.65 | 0.38 | -0.51 | 0.75 | -0.66 | 0.76 |
|  | b | -0.91 | -0.82 | -0.66 | -0.84 | 0.81 | -0.89 | 0.85 | -0.96 | -0.92 | -0.90 | -0.68 | -0.66 | -0.36 | 0.49 | -0.77 | 0.68 | -0.74 |
|  | $\mathrm{PC1} / \mathrm{R}_{\mathrm{F}}$ | -0.81 | -0.75 | -0.44 | -0.68 | 0.63 | -0.76 | 0.70 | -0.87 | -0.80 | -0.83 | -0.46 | -0.66 | -0.23 | 0.35 | -0.75 | 0.70 | -0.56 |
|  | $\mathrm{PCl} / \mathrm{R}_{\mathrm{M}}$ | 0.86 | 0.79 | 0.53 | 0.74 | -0.71 | 0.82 | -0.77 | 0.91 | 0.86 | 0.87 | 0.54 | 0.68 | 0.28 | -0.41 | 0.78 | $-0.72$ | 0.63 |
| Olive oil | $\mathrm{mR}_{\mathrm{F}}$ | 0.83 | 0.80 | 0.38 | 0.63 | -0.59 | 0.76 | -0.69 | 0.88 | 0.80 | 0.84 | 0.46 | 0.74 | 0.28 | -0.29 | 0.80 | -0.76 | 0.49 |
|  | $\mathrm{mR}_{\mathrm{M}}$ | -0.86 | -0.83 | -0.44 | -0.68 | 0.64 | -0.80 | 0.74 | -0.91 | -0.84 | -0.87 | -0.52 | -0.75 | -0.31 | 0.32 | -0.82 | 0.78 | -0.53 |
|  | $\mathrm{R}_{\text {M0 }}$ | 0.89 | 0.82 | 0.58 | 0.78 | -0.75 | 0.86 | -0.81 | 0.95 | 0.89 | 0.89 | 0.61 | 0.69 | 0.32 | -0.39 | 0.78 | -0.72 | 0.66 |
|  | b | -0.89 | -0.83 | -0.55 | -0.76 | 0.73 | -0.85 | 0.79 | -0.95 | -0.89 | -0.89 | -0.59 | -0.71 | -0.32 | 0.37 | -0.80 | 0.74 | -0.63 |
|  | $\mathrm{PCl} / \mathrm{R}_{\mathrm{F}}$ | -0.83 | -0.80 | -0.38 | -0.63 | 0.60 | -0.76 | 0.69 | -0.88 | -0.80 | -0.84 | -0.47 | -0.74 | -0.28 | 0.29 | -0.80 | 0.77 | -0.49 |
|  | $\mathrm{PCl} / \mathrm{R}_{\mathrm{M}}$ | 0.87 | 0.83 | 0.44 | 0.68 | -0.65 | 0.80 | -0.74 | 0.91 | 0.84 | 0.87 | 0.52 | 0.75 | 0.31 | -0.32 | 0.82 | -0.77 | 0.53 |
|  | $\mathrm{mR}_{\mathrm{F}}$ | 0.51 | 0.54 | 0.04 | 0.29 | -0.23 | 0.41 | -0.32 | 0.63 | 0.47 | 0.55 | 0.12 | 0.52 | 0.09 | 0.07 | 0.55 | -0.55 | 0.18 |
| Sunflower oil | $\mathrm{mR}_{\mathrm{M}}$ | -0.53 | -0.57 | -0.03 | -0.29 | 0.23 | -0.42 | 0.33 | -0.66 | -0.48 | -0.56 | -0.15 | -0.55 | -0.14 | -0.10 | -0.56 | 0.57 | -0.16 |
|  | $\mathrm{R}_{\mathrm{Mo}}$ | 0.62 | 0.70 | 0.03 | 0.31 | -0.26 | 0.48 | -0.39 | 0.73 | 0.56 | 0.62 | 0.25 | 0.67 | 0.27 | 0.02 | 0.66 | -0.66 | 0.16 |
|  | b | -0.61 | $-0.69$ | -0.03 | -0.31 | 0.26 | -0.48 | 0.38 | -0.73 | -0.55 | -0.62 | -0.23 | -0.66 | -0.24 | -0.04 | -0.65 | 0.66 | -0.16 |
|  | $\mathrm{PC1} / \mathrm{R}_{\mathrm{F}}$ | -0.49 | -0.52 | -0.03 | -0.28 | 0.22 | -0.39 | 0.30 | -0.62 | -0.45 | -0.53 | -0.10 | -0.50 | -0.09 | -0.09 | -0.53 | 0.53 | -0.17 |
|  | $\mathrm{PCl} / \mathrm{R}_{\mathrm{M}}$ | 0.53 | 0.57 | 0.03 | 0.29 | -0.22 | 0.42 | -0.32 | 0.66 | 0.48 | 0.56 | 0.15 | 0.55 | 0.14 | 0.11 | 0.56 | -0.57 | 0.16 |
| Corn oil | $\mathrm{mR}_{\mathrm{F}}$ | 0.76 | 0.76 | 0.25 | 0.52 | -0.48 | 0.67 | -0.59 | 0.82 | 0.72 | 0.77 | 0.36 | 0.72 | 0.25 | -0.19 | 0.77 | -0.75 | 0.38 |
|  | $\mathrm{mR}_{\mathrm{M}}$ | -0.80 | -0.79 | -0.31 | -0.57 | 0.53 | -0.71 | 0.64 | -0.86 | -0.76 | -0.81 | -0.43 | -0.74 | -0.28 | 0.21 | -0.79 | 0.76 | -0.42 |
|  | $\mathrm{R}_{\text {M0 }}$ | 0.83 | 0.75 | 0.63 | 0.79 | -0.75 | 0.82 | -0.77 | 0.93 | 0.85 | 0.83 | 0.62 | 0.57 | 0.30 | -0.38 | 0.68 | -0.60 | 0.69 |
|  | b | -0.84 | -0.77 | -0.57 | -0.76 | 0.71 | -0.81 | 0.76 | -0.93 | -0.85 | -0.85 | -0.59 | -0.62 | -0.31 | 0.35 | -0.72 | 0.65 | -0.64 |
|  | $\mathrm{PC1} / \mathrm{R}_{\mathrm{F}}$ | -0.75 | $-0.75$ | -0.22 | -0.49 | 0.45 | -0.65 | 0.57 | -0.80 | -0.70 | -0.76 | -0.34 | -0.73 | -0.25 | 0.17 | -0.77 | 0.75 | -0.35 |
|  | $\mathrm{PC1} / \mathrm{R}_{\mathrm{M}}$ | 0.80 | 0.79 | 0.31 | 0.57 | -0.53 | 0.71 | -0.64 | 0.86 | 0.76 | 0.81 | 0.43 | 0.74 | 0.28 | -0.21 | 0.79 | -0.76 | 0.42 |
| Castor <br> oil | $\mathrm{mR}_{\mathrm{F}}$ | 0.69 | 0.69 | 0.18 | 0.45 | -0.41 | 0.61 | -0.53 | 0.75 | 0.64 | 0.73 | 0.28 | 0.72 | 0.17 | -0.11 | 0.75 | -0.75 | 0.27 |
|  | $\mathrm{mR}_{\mathrm{M}}$ | -0.78 | $-0.76$ | -0.31 | -0.56 | 0.52 | -0.70 | 0.63 | -0.83 | -0.74 | -0.80 | -0.39 | -0.75 | -0.23 | 0.20 | -0.79 | 0.77 | -0.38 |
|  | $\mathrm{R}_{\text {M0 }}$ | 0.78 | 0.66 | 0.75 | 0.85 | -0.83 | 0.82 | -0.80 | 0.81 | 0.84 | 0.75 | 0.68 | 0.42 | 0.33 | -0.64 | 0.57 | -0.46 | 0.85 |

TABLE 5 Continued

| Stationary Phase | Index | $\begin{gathered} \mathrm{Log} \\ \mathrm{P}^{\mathrm{C}} \end{gathered}$ | $\begin{gathered} \mathrm{Log} \\ \mathrm{P}^{\mathrm{V}} \end{gathered}$ | CLOGP | MLOGP | MLOGP ${ }^{2}$ | ALOGP | ALOGP ${ }^{2}$ | ALOGPs | AC $\log \mathrm{P}$ | miLog P | KOWWIN | XLOGP2 | XLOGP3 | $\mathrm{S}_{\text {Exp }}$ | ALOGpS | $\begin{gathered} \mathrm{AC} \\ \log \mathrm{~S} \end{gathered}$ | AB/ $/ \log \mathrm{S}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Margarine | b | -0.85 | $-0.73$ | -0.73 | -0.86 | 0.84 | -0.86 | 0.84 | -0.88 | -0.89 | -0.83 | -0.68 | -0.52 | -0.34 | 0.61 | $-0.66$ | 0.56 | -0.83 |
|  | $\mathrm{PC} 1 / \mathrm{R}_{\mathrm{F}}$ | -0.65 | -0.66 | -0.13 | -0.39 | 0.35 | -0.56 | 0.48 | -0.70 | -0.59 | -0.69 | -0.24 | -0.70 | -0.15 | 0.05 | -0.72 | 0.73 | -0.21 |
|  | $\mathrm{PC} 1 / \mathrm{R}_{\mathrm{M}}$ | 0.79 | 0.76 | 0.33 | 0.58 | -0.54 | 0.72 | -0.65 | 0.84 | 0.75 | 0.81 | 0.41 | 0.75 | 0.24 | -0.21 | 0.79 | -0.77 | 0.41 |
|  | $\mathrm{mR}_{\mathrm{F}}$ | 0.78 | 0.73 | 0.47 | 0.68 | -0.63 | 0.74 | -0.68 | 0.88 | 0.78 | 0.80 | 0.50 | 0.61 | 0.26 | -0.29 | 0.69 | -0.64 | 0.56 |
|  | $\mathrm{mR}_{\mathrm{M}}$ | -0.82 | $-0.76$ | -0.52 | -0.72 | 0.68 | -0.79 | 0.73 | -0.90 | -0.82 | -0.83 | -0.55 | -0.64 | -0.29 | 0.33 | -0.72 | 0.66 | -0.60 |
|  | $\mathrm{R}_{\text {M0 }}$ | 0.73 | 0.66 | 0.45 | 0.62 | -0.63 | 0.71 | -0.69 | 0.66 | 0.74 | 0.71 | 0.49 | 0.60 | 0.30 | -0.55 | 0.69 | -0.63 | 0.57 |
|  | b | -0.84 | $-0.77$ | -0.52 | -0.72 | 0.71 | -0.81 | 0.78 | -0.81 | -0.84 | -0.82 | -0.56 | -0.68 | -0.33 | 0.55 | -0.77 | 0.71 | -0.64 |
|  | $\mathrm{PC} 1 / \mathrm{R}_{\mathrm{F}}$ | -0.77 | $-0.72$ | -0.47 | -0.67 | 0.62 | -0.73 | 0.67 | -0.87 | -0.77 | -0.79 | -0.50 | -0.60 | -0.26 | 0.28 | -0.68 | 0.63 | -0.55 |
|  | $\mathrm{PC1} / \mathrm{R}_{\mathrm{M}}$ | 0.83 | 0.77 | 0.53 | 0.73 | -0.68 | 0.80 | -0.74 | 0.91 | 0.83 | 0.84 | 0.56 | 0.65 | 0.30 | -0.34 | 0.73 | -0.67 | 0.60 |

TABLE 6 The Correlations between the Theoretical and Experimental Lipophilicity Indices of Natural Sweeteners (Plates Impregnated with Butter, Animal and Human Fat)

| Stationary <br> Phase | Index | $\begin{aligned} & \log \\ & \mathrm{P}^{\mathrm{C}} \end{aligned}$ | $\begin{aligned} & \mathrm{Log} \\ & \mathrm{P}^{\mathrm{V}} \end{aligned}$ | CLOGP | MLOGP | MLOGP ${ }^{2}$ | ALOGP | ALOGP $^{2}$ | ALOGPs | $\begin{gathered} \mathrm{AC} \\ \log \mathrm{P} \end{gathered}$ | miLogP | KOWWIN | XLOGP2 | XLOGP3 | $\mathrm{S}_{\text {Exp }}$ | ALOGpS | $\begin{gathered} \mathrm{AC} \\ \operatorname{logS} \end{gathered}$ | AB/LogS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Butter | $\mathrm{mR}_{\mathrm{F}}$ | 0.78 | 0.74 | 0.39 | 0.62 | -0.58 | 0.73 | -0.66 | 0.85 | 0.77 | 0.80 | 0.44 | 0.67 | 0.24 | -0.24 | 0.74 | $-0.70$ | 0.49 |
|  | $m R_{M}$ | -0.83 | $-0.78$ | -0.44 | -0.67 | 0.63 | $-0.77$ | 0.71 | -0.89 | -0.81 | -0.84 | -0.50 | -0.70 | -0.28 | 0.28 | -0.77 | 0.73 | -0.53 |
|  | $\mathrm{R}_{\mathrm{M} 0}$ | 0.93 | 0.89 | 0.49 | 0.71 | -0.71 | 0.87 | -0.82 | 0.89 | 0.91 | 0.89 | 0.63 | 0.83 | 0.43 | -0.57 | 0.88 | -0.83 | 0.59 |
|  | b | 0.08 | 0.06 | -0.06 | -0.02 | -0.01 | 0.08 | -0.09 | -0.03 | 0.03 | 0.12 | -0.05 | 0.26 | -0.07 | -0.07 | 0.23 | -0.27 | -0.15 |
|  | $\mathrm{PC} 1 / \mathrm{R}_{\mathrm{F}}$ | -0.78 | $-0.73$ | -0.40 | -0.62 | 0.58 | -0.72 | 0.66 | -0.85 | -0.76 | -0.80 | -0.44 | -0.66 | -0.23 | 0.23 | -0.73 | 0.69 | -0.49 |
|  | $\mathrm{PC} 1 / \mathrm{R}_{\mathrm{M}}$ | 0.83 | 0.78 | 0.44 | 0.67 | -0.63 | 0.77 | -0.71 | 0.88 | 0.81 | 0.84 | 0.50 | 0.70 | 0.28 | -0.28 | 0.77 | -0.73 | 0.53 |
| Cod liver oil | $\mathrm{mR}_{\mathrm{F}}$ | 0.87 | 0.82 | 0.42 | 0.67 | -0.64 | 0.81 | -0.74 | 0.89 | 0.84 | 0.88 | 0.49 | 0.77 | 0.29 | -0.36 | 0.84 | -0.80 | 0.53 |
|  | $\mathrm{mR}_{\mathrm{M}}$ | -0.89 | -0.84 | -0.45 | -0.70 | 0.67 | -0.83 | 0.77 | -0.91 | -0.87 | -0.90 | -0.53 | -0.78 | -0.31 | 0.37 | -0.86 | 0.81 | -0.55 |
|  | $\mathrm{R}_{\mathrm{M} 0}$ | 0.53 | 0.57 | 0.13 | 0.32 | -0.29 | 0.44 | -0.37 | 0.61 | 0.49 | 0.52 | 0.28 | 0.51 | 0.25 | -0.15 | 0.51 | $-0.50$ | 0.22 |
|  | b | 0.09 | 0.06 | -0.05 | -0.02 | -0.01 | 0.08 | -0.10 | -0.03 | 0.04 | 0.13 | -0.04 | 0.27 | -0.07 | -0.08 | 0.23 | -0.27 | -0.15 |
|  | $\mathrm{PC} 1 / \mathrm{R}_{\mathrm{F}}$ | -0.86 | -0.82 | -0.42 | -0.67 | 0.64 | -0.80 | 0.74 | -0.89 | -0.84 | -0.87 | -0.49 | -0.77 | -0.29 | 0.35 | -0.84 | 0.80 | -0.53 |
|  | $\mathrm{PC} 1 / \mathrm{R}_{\mathrm{M}}$ | 0.89 | 0.84 | 0.46 | 0.70 | -0.67 | 0.83 | -0.77 | 0.91 | 0.87 | 0.90 | 0.53 | 0.78 | 0.30 | -0.38 | 0.86 | -0.81 | 0.55 |
| Pig fat | $\mathrm{mR}_{\mathrm{F}}$ | 0.80 | 0.79 | 0.34 | 0.60 | -0.55 | 0.73 | -0.66 | 0.87 | 0.77 | 0.82 | 0.43 | 0.73 | 0.27 | -0.24 | 0.79 | -0.75 | 0.45 |
|  | $\mathrm{mR}_{\mathrm{M}}$ | -0.87 | $-0.83$ | -0.45 | -0.69 | 0.65 | -0.81 | 0.75 | -0.92 | -0.85 | -0.88 | -0.53 | -0.76 | -0.32 | 0.33 | -0.82 | 0.78 | -0.54 |
|  | $\mathrm{R}_{\mathrm{M} 0}$ | 0.92 | 0.79 | 0.78 | 0.91 | -0.90 | 0.94 | -0.92 | 0.92 | 0.95 | 0.91 | 0.76 | 0.64 | 0.37 | -0.66 | 0.76 | -0.67 | 0.81 |
|  | b | -0.93 | $-0.82$ | -0.74 | -0.89 | 0.87 | -0.94 | 0.91 | -0.94 | -0.95 | -0.92 | -0.73 | -0.67 | -0.36 | 0.62 | -0.79 | 0.70 | -0.78 |
|  | $\mathrm{PC1} / \mathrm{R}_{\mathrm{F}}$ | -0.80 | $-0.78$ | -0.32 | -0.58 | 0.54 | $-0.72$ | 0.64 | -0.86 | $-0.76$ | -0.81 | -0.42 | -0.73 | -0.27 | 0.22 | -0.78 | 0.76 | -0.43 |
|  | $\mathrm{PC} 1 / \mathrm{R}_{\mathrm{M}}$ | 0.88 | 0.83 | 0.46 | 0.70 | -0.66 | 0.82 | -0.76 | 0.92 | 0.85 | 0.88 | 0.54 | 0.76 | 0.32 | -0.34 | 0.83 | -0.78 | 0.55 |
| Sheep fat | $\mathrm{mR}_{\mathrm{F}}$ | 0.67 | 0.68 | 0.10 | 0.39 | -0.35 | 0.57 | -0.49 | 0.72 | 0.61 | 0.71 | 0.20 | 0.73 | 0.14 | -0.06 | 0.76 | -0.77 | 0.22 |
|  | $m R_{M}$ | -0.75 | $-0.76$ | -0.21 | -0.49 | 0.45 | -0.66 | 0.58 | -0.80 | $-0.70$ | -0.78 | -0.33 | -0.77 | -0.22 | 0.11 | -0.80 | 0.79 | -0.31 |
|  | $\mathrm{R}_{\mathrm{M} 0}$ | 0.76 | 0.65 | 0.83 | 0.86 | -0.85 | 0.80 | -0.80 | 0.78 | 0.82 | 0.69 | 0.83 | 0.36 | 0.47 | $-0.73$ | 0.48 | -0.35 | 0.87 |
|  | b | -0.86 | $-0.77$ | -0.79 | -0.88 | 0.87 | -0.88 | 0.86 | -0.90 | -0.91 | -0.81 | -0.81 | -0.52 | -0.47 | 0.67 | -0.63 | 0.51 | -0.84 |
|  | $\mathrm{PC} 1 / \mathrm{R}_{\mathrm{F}}$ | -0.64 | $-0.65$ | -0.06 | -0.35 | 0.31 | -0.53 | 0.45 | -0.68 | -0.57 | -0.68 | -0.16 | -0.72 | -0.11 | 0.01 | -0.74 | 0.76 | -0.18 |
|  | $\mathrm{PC1} / \mathrm{R}_{\mathrm{M}}$ | 0.75 | 0.75 | 0.21 | 0.48 | -0.44 | 0.65 | -0.58 | 0.80 | 0.70 | 0.78 | 0.33 | 0.77 | 0.22 | -0.11 | 0.80 | -0.79 | 0.30 |
| Pullet fat | $\mathrm{mR}_{\mathrm{F}}$ | 0.79 | 0.77 | 0.33 | 0.58 | -0.54 | 0.71 | -0.64 | 0.85 | 0.76 | 0.80 | 0.42 | 0.72 | 0.27 | -0.23 | 0.77 | -0.74 | 0.44 |
|  | $m R_{M}$ | -0.82 | $-0.80$ | -0.38 | -0.62 | 0.58 | $-0.75$ | 0.68 | -0.88 | -0.79 | -0.83 | -0.48 | -0.73 | -0.30 | 0.27 | -0.78 | 0.75 | -0.48 |
|  | $\mathrm{R}_{\mathrm{M} 0}$ | 0.85 | 0.78 | 0.64 | 0.78 | -0.77 | 0.83 | -0.80 | 0.88 | 0.86 | 0.81 | 0.70 | 0.60 | 0.42 | -0.60 | 0.68 | -0.60 | 0.71 |
|  | b | -0.86 | -0.80 | -0.59 | -0.76 | 0.74 | -0.83 | 0.79 | -0.90 | -0.86 | -0.83 | -0.66 | -0.64 | -0.40 | 0.53 | -0.72 | 0.65 | -0.67 |
|  | $\mathrm{PC1} / \mathrm{R}_{\mathrm{F}}$ | $-0.78$ | $-0.77$ | -0.32 | -0.57 | 0.53 | $-0.71$ | 0.63 | -0.85 | $-0.75$ | -0.80 | -0.41 | -0.72 | -0.26 | 0.22 | $-0.77$ | 0.74 | -0.43 |
|  | $\mathrm{PC} 1 / \mathrm{R}_{\mathrm{M}}$ | 0.82 | 0.80 | 0.38 | 0.62 | -0.59 | 0.75 | -0.68 | 0.88 | 0.79 | 0.83 | 0.48 | 0.73 | 0.30 | -0.28 | 0.78 | -0.75 | 0.48 |

TABLE 6 Continued

| Stationary Phase | Index | $\begin{gathered} \text { Log } \\ \mathrm{P}^{\mathrm{C}} \end{gathered}$ | $\begin{gathered} \text { Log } \\ \mathrm{P}^{\mathrm{V}} \end{gathered}$ | CLOGP | MLOGP | MLOGP ${ }^{2}$ | ALOGP | ALOGP ${ }^{2}$ | ALOGPs | $\begin{gathered} \mathrm{AC} \\ \log \mathrm{P} \end{gathered}$ | miLogP | KOWWIN | XLOGP2 | XLOGP3 | $\mathrm{S}_{\text {Exp }}$ | ALOGpS | $\begin{gathered} \mathrm{AC} \\ \log \mathrm{~S} \end{gathered}$ | AB/LogS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Human fat | $\mathrm{mR}_{\mathrm{F}}$ | 0.71 | 0.71 | 0.25 | 0.50 | -0.46 | 0.63 | -0.56 | 0.78 | 0.68 | 0.73 | 0.34 | 0.66 | 0.22 | -0.12 | 0.71 | -0.69 | 0.37 |
|  | $\mathrm{mR}_{\mathrm{M}}$ | -0.78 | -0.76 | -0.35 | -0.59 | 0.55 | -0.71 | 0.65 | -0.84 | -0.76 | -0.79 | -0.44 | -0.70 | -0.27 | 0.20 | -0.76 | 0.72 | -0.45 |
|  | $\mathrm{R}_{\mathrm{M0}}$ | 0.88 | 0.71 | 0.81 | 0.93 | -0.92 | 0.93 | -0.92 | 0.86 | 0.93 | 0.89 | 0.69 | 0.56 | 0.27 | -0.78 | 0.72 | -0.62 | 0.88 |
|  | b | -0.91 | $-0.77$ | -0.76 | -0.91 | 0.89 | -0.94 | 0.91 | -0.91 | -0.95 | -0.92 | -0.67 | -0.62 | -0.28 | 0.70 | -0.77 | 0.68 | -0.83 |
|  | $\mathrm{PCl} / \mathrm{R}_{\mathrm{F}}$ | -0.70 | -0.70 | -0.23 | -0.48 | 0.44 | -0.61 | 0.54 | -0.77 | -0.66 | -0.71 | -0.33 | -0.66 | -0.22 | 0.09 | -0.70 | 0.68 | -0.35 |
|  | $\mathrm{PC1} / \mathrm{R}_{\mathrm{M}}$ | 0.80 | 0.77 | 0.38 | 0.62 | $-0.58$ | 0.74 | -0.67 | 0.86 | 0.78 | 0.81 | 0.46 | 0.70 | 0.28 | -0.23 | 0.77 | $-0.73$ | 0.48 |

In order to get more information concerning the similarities and differences between the oil and fat layers, PCA was applied to the matrices resulted by considering each of the six experimental lipophilicity indices (Figure 3). According to the 3D representations, the human fat


FIGURE 2 The correlation patterns of $m R_{F}(a), \mathrm{mR}_{\mathrm{M}}(\mathrm{b}), \mathrm{R}_{\mathrm{M} 0}(\mathrm{c}), \mathrm{b}(\mathrm{d}), \mathrm{PC1} / \mathrm{R}_{\mathrm{F}}(\mathrm{e})$, and $\mathrm{PC1} / \mathrm{R}_{\mathrm{M}}$ (f) corresponding to the investigated reverse stationary phases.


FIGURE 3 The "lipophilicity spaces" obtained by PC1-PC2-PC3 score plot obtained on the matrices formed by the TLC lipophilicity indices estimated on all investigated reverse stationary phases: $\mathrm{mR}_{\mathrm{F}}(\mathrm{a}) ; \mathrm{mR}_{\mathrm{M}}(\mathrm{b}) ; \mathrm{R}_{\mathrm{M} 0}(\mathrm{c}) ; \mathrm{b}(\mathrm{d}) ; \mathrm{PC1} / \mathrm{R}_{\mathrm{F}}(\mathrm{e}) ; \mathrm{PC1} / \mathrm{R}_{\mathrm{M}}(\mathrm{f})$.
lipophilicity appears in the group of outliers including sheep and pig fat, margarine, and sunflower oil. The sunflower and castor plant oil are the less lipophilic oils, closely followed by the corn and olive, while the cod liver oil is confirmed as the less lipophilic animal fat.

Moreover, the PCA might be used for investigating the retention mechanism involved in the chromatographic process by examination of the profile of loadings/eigenvectors corresponding to the first principal component. The profiles of loadings presented in Figure 4 illustrate once again the similarity and differences between the investigated reversed


FIGURE 4 Profiles of loadings corresponding to the first principal component obtained by applying PCA to $R_{F}$ values (a) and $R_{M}$ values (b) obtained using spline function.
phases, and confirm the above statements. The profiles are more or less similar and one may conclude that the main retention mechanism (lipophilic interactions) is more or less the same; a highest similarity may be easily observed in the case of human fat and margarine.

## CONCLUSIONS

The results obtained and discussed in this paper indicate no significant differences between oil and fat impregnated TLC-silica gel plates and recommend them as an alternative in the field of lipophilicity estimation. This conclusion is more evident illustrated by the correlation between the theoretical lipophilicity descriptors and the lipophilicity indices estimated from retention data. However, the chromatographic behavior is weakly corelated with the theoretical and experimental solubility. From the tested lipophilicity indices, the mean of $\mathrm{R}_{\mathrm{M}}$ values showed, in all cases, the best regularities and significant correlations and might be one of the most attractive alternative. In addition, the PCA offered a realistic characterization and ranking of impregnation materials, both from the lipophilicity and retention mechanism point of view.

## ACKNOWLEDGMENT

The financial support of the Ministry of Education, Research and Innovation of Romania (ID 560/2007-2010) is gratefully acknowledged.

## REFERENCES

1. Grover, M.; Singh, B.; Bakshi, M.; Singh, S. Quantitative structure-property relationships in pharmaceutical research-part 2. Pharm. Sci. Technol. Today 2000, 3 (2), 50-57.
2. Huszár, M.; Hallgas, B.; Idei, M.; Kiss-Szikszai, A.; Horváth, A.; Patonay, T. Lipophilicity of substituted aurones and related compounds measured on immobilized artificial membrane (IAM) and conventional C8 (MOS) columns. J. Liq. Chromatogr. \& Rel. Technol. 2008, 31, 3143-3158.
3. http://goldbook.iupac.org/LT06965.html
4. Sangster, J. Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry, Wiley: West Sussex, UK, 1997.
5. Kaliszan, R. Structure and Retention in Chromatography: A Chemometric Approach, Harwood Academic Publishers: Amsterdam, The Netherlands, 1997.
6. Huber, J.F.K.; Meijers, C.A.H.; Hulsman, J.A.R.J. Prediction of partition coefficients in liquid-liquid systems and its experimental verification for steroids by static and chromatographic measurements. Anal. Chem. 1972, 44, 111-116.
7. Kaune, A.; Knorrenschild, M.; Kettrup, A. Predicting 1-octanol - water partition coefficients by high-performance liquid chromatography gradient elution. Fresenius J. Anal. Chem. 1995, 352 (3-4), 303-312.
8. http://www.sunflowernsa.com/uploads/NuSun_FactSheet_vol_1.3.pdf
9. http://www.corn.org/CornOil.pdf
10. Lascu, D. Food Encyclopedia, All: Bucharest, Romania, 2008.
11. Djaković-Sekulić, T.L.; Sârbu, C.; Perišić-Janjić, N.U. A comparative study of the lipophilicity of benzimidazole and benztriazole derivatives by RPTLC. J. Planar Chromatogr. 2005, 18 (106), 432-436.
12. Perišić-Janjić, N.U.; Djaković-Sekulić, T.L. Study of the characteristics and separation properties of unconventional TLC supports. Part I. J. Planar Chromatogr. 2006, 19 (112), 438-442.
13. Pyka, A.; Babuśka, M.; Śliwiok, J. Use of liquid chromatography and theoretical computation methods to compare the lipophilicity of selected cortisone derivatives. J. Planar Chromatogr. 2006, 19 (112), 432-437.
14. Djaković-Sekulić, T.L.; Perišić-Janjić, N.U. Study of the characteristics and separation power of unconventional TLC supports. II. Principal components analysis. J. Planar Chromatogr. 2007, 20 (1), 7-11.
15. Csermely, T.; Petroianu, G.; Kuca, K.; Fûrész, J.; Darvas, F.; Gulyás, Z.; Laufer, R.; Kalász, H. TLC of quaternary piridinium aldoximes, antidotes of organophosphorus esterase inhibitors. J. Planar Chromatogr. 2007, 20 (1), 39-42.
16. Kresta, J.; Kastner, P.; Klimeš, J.; Klimešová, V. Reverse-phase thin-layer chromatographic determination of the lipophilicity of potential antituberculotic compounds. J. Planar Chromatogr. 2005, 18 (106), 450-454.
17. Mrkvičková, Z.; Kovaříková, P.; Klimeš, J.; Doležal, M. Determination of the lipophilicity of potential antituberculotic compounds by RP-TLC. J. Planar Chromatogr. 2006, 19 (112), 422-426.
18. Pyka, A. New method of calculation of the partition coefficients of selected alkoxyphenols investigated by RP-TLC. J. Planar Chromatogr. 2004, 17 (1), 58-60.
19. Mazzobre, M.F.; Roman, M.V.; Mourelle, A.F.; Corti, H.R. Octanol-water partition coefficients of glucose, sucrose, and trehalose. Carbohydr. Res. 2005, 340 (6), 1207-1211.
20. Bate-Smith, E.C.; Westall, R.G. Chromatographic behavior and chemical structure. I. Some naturally occurring phenolic substances. Biochim. Biophys. Acta 1950, 4, 427-440.
21. Soczewinski, E.; Wachtmeister, C.A. The relation between the composition of certain ternary two-phase solvent systems and $R_{M}$ values. J. Chromatogr. A 1962, 7, 311-320.
22. Briciu, R.D.; Kot-Wasik, A.; Namiesńik, J.; Sârbu, C. A comparative study of the molecular lipophilicity indices of vitamins $A$ and $E$, and of some precursors of vitamin A, estimated by HPLC and by different computation methods. Acta Chromatogr. 2009, 21 (2), 237-250.
23. Briciu, R.D.; Kot-Wasik, A.; Namiesńik, J.; Sârbu, C. The lipophilicity indices of flavonoids estimated by reverse-phase liquid chromatography using different computation methods. J. Sep. Sci. 2009, 32 (12), 2066-2074.
24. Sârbu, C.; Todor, S. Determination of lipophilicity of some non-steroidal anti-inflamatory agents and their relationships by using principal components analysis based on thin-layer chromatographic retention data. J. Chromatogr. A 1998, 822 (2), 263-269.
25. Casoni, D.; Kot-Wasik, A.; Namiesńik, J.; Sârbu, C. Lipophilicity data for some preservatives estimated by reverse-phase liquid chromatography and different computation methods, J. Chromatogr. A 2009, 1216 (12), 2456-2465.
26. Tetko, I.V.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone, D.; Ertl, P.; Palyulin, V.A.; Radchenko, E.V.; Zefirov, N.S.; Makarenko, A.S.; Tanchuk, V.Y.; Prokopenko, V.V. Virtual computational chemistry laboratory - design and description. J. Comput. Aided Mol. Des. 2005, 19 (6), 453-463.
27. www.metabolomics.ca
28. Smith, J.; Hong-Shum, L. Food Additives Data Book, Blackwell Science: Oxford, UK, 2003.
29. www.wikipedia.org
30. www.chemicalbook.com
31. Mannhold, R.; Poda, G.I.; Ostermann, C.; Tetko, I.V. Calculation of molecular lipophilicity: state of the art and comparison of $\log P$ methods on more than 96000 compounds. J. Pharm. Sci. 2009, (3), 861-893.

[^0]:    Address correspondence to Costel Sârbu, Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos Str. No. 11, RO-400028, Cluj Napoca, Romania. E-mail: csarbu@ chem.ubbcluj.ro

